Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178.757
Filtrar
1.
Sci Rep ; 14(1): 8395, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600099

RESUMO

The aim of the present study was to investigate retinal microcirculatory and functional metabolic changes in patients after they had recovered from a moderate to severe acute COVID-19 infection. Retinal perfusion was quantified using laser speckle flowgraphy. Oxygen saturation and retinal calibers were assessed with a dynamic vessel analyzer. Arterio-venous ratio (AVR) was calculated based on retinal vessel diameter data. Blood plasma samples underwent mass spectrometry-based multi-omics profiling, including proteomics, metabolomics and eicosadomics. A total of 40 subjects were included in the present study, of which 29 had recovered from moderate to severe COVID-19 within 2 to 23 weeks before inclusion and 11 had never had COVID-19, as confirmed by antibody testing. Perfusion in retinal vessels was significantly lower in patients (60.6 ± 16.0 a.u.) than in control subjects (76.2 ± 12.1 a.u., p = 0.006). Arterio-venous (AV) difference in oxygen saturation and AVR was significantly lower in patients compared to healthy controls (p = 0.021 for AVR and p = 0.023 for AV difference in oxygen saturation). Molecular profiles demonstrated down-regulation of cell adhesion molecules, NOTCH3 and fatty acids, and suggested a bisphasic dysregulation of nitric oxide synthesis after COVID-19 infection. The results of this study imply that retinal perfusion and oxygen metabolism is still significantly altered in patients well beyond the acute phase of COVID-19. This is also reflected in the molecular profiling analysis of blood plasma, indicating a down-regulation of nitric oxide-related endothelial and immunological cell functions.Trial Registration: ClinicalTrials.gov ( https://clinicaltrials.gov ) NCT05650905.


Assuntos
COVID-19 , Oxigênio , Humanos , Oxigênio/metabolismo , Microcirculação , Óxido Nítrico , Oximetria/métodos , Vasos Retinianos , Perfusão , Proteínas Sanguíneas , Lipídeos
2.
Alzheimers Res Ther ; 16(1): 78, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600598

RESUMO

BACKGROUND: Neuroinflammation, impaired metabolism, and hypoperfusion are fundamental pathological hallmarks of early Alzheimer's disease (AD). Numerous studies have asserted a close association between neuroinflammation and disrupted cerebral energetics. During AD progression and other neurodegenerative disorders, a persistent state of chronic neuroinflammation reportedly exacerbates cytotoxicity and potentiates neuronal death. Here, we assessed the impact of a neuroinflammatory challenge on metabolic demand and microvascular hemodynamics in the somatosensory cortex of an AD mouse model. METHODS: We utilized in vivo 2-photon microscopy and the phosphorescent oxygen sensor Oxyphor 2P to measure partial pressure of oxygen (pO2) and capillary red blood cell flux in cortical microvessels of awake mice. Intravascular pO2 and capillary RBC flux measurements were performed in 8-month-old APPswe/PS1dE9 mice and wildtype littermates on days 0, 7, and 14 of a 14-day period of lipopolysaccharide-induced neuroinflammation. RESULTS: Before the induced inflammatory challenge, AD mice demonstrated reduced metabolic demand but similar capillary red blood cell flux as their wild type counterparts. Neuroinflammation provoked significant reductions in cerebral intravascular oxygen levels and elevated oxygen extraction in both animal groups, without significantly altering red blood cell flux in capillaries. CONCLUSIONS: This study provides evidence that neuroinflammation alters cerebral oxygen demand at the early stages of AD without substantially altering vascular oxygen supply. The results will guide our understanding of neuroinflammation's influence on neuroimaging biomarkers for early AD diagnosis.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Doenças Neuroinflamatórias , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Oxigênio
3.
J Nanobiotechnology ; 22(1): 180, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622591

RESUMO

To address the limitations of traditional photothermal therapy (PTT)/ photodynamic therapy (PDT) and real-time cancer metastasis detection, a pH-responsive nanoplatform (NP) with dual-modality imaging capability was rationally designed. Herein, 1 H,1 H-undecafluorohexylamine (PFC), served as both an oxygen carrier and a 19F magnetic resonance imaging (MRI) probe, and photosensitizer indocyanine green (ICG) were grafted onto the pH-responsive peptide hexahistidine (H6) to form H6-PFC-ICG (HPI). Subsequently, the heat shock protein 90 inhibitor, gambogic acid (GA), was incorporated into hyaluronic acid (HA) modified HPI (HHPI), yielding the ultimate HHPI@GA NPs. Upon self-assembly, HHPI@GA NPs passively accumulated in tumor tissues, facilitating oxygen release and HA-mediated cell uptake. Once phagocytosed by lysosomes, protonation of H6 was triggered due to the low pH, resulting in the release of GA. With near-infrared laser irradiation, GA-mediated decreased HSP90 expression and PFC-mediated increased ROS generation amplified the PTT/PDT effect of HHPI@GA, leading to excellent in vitro and in vivo anticancer efficacies. Additionally, the fluorescence and 19F MRI dual-imaging capabilities of HHPI@GA NPs enabled effective real-time primary cancer and lung metastasis monitoring. This work offers a novel approach for enhanced cancer phototherapy, as well as precise cancer diagnosis.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Fototerapia/métodos , Verde de Indocianina , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Oxigênio , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
4.
J Am Chem Soc ; 146(15): 10632-10639, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579124

RESUMO

Nonenzymatic template-directed RNA copying requires catalysis by divalent metal ions. The primer extension reaction involves the attack of the primer 3'-hydroxyl on the adjacent phosphate of a 5'-5'-imidazolium-bridged dinucleotide substrate. However, the nature of the interaction of the catalytic metal ion with the reaction center remains unclear. To explore the coordination of the catalytic metal ion with the imidazolium-bridged dinucleotide substrate, we examined catalysis by oxophilic and thiophilic metal ions with both diastereomers of phosphorothioate-modified substrates. We show that Mg2+ and Cd2+ exhibit opposite preferences for the two phosphorothioate substrate diastereomers, indicating a stereospecific interaction of the divalent cation with one of the nonbridging phosphorus substituents. High-resolution X-ray crystal structures of the products of primer extension with phosphorothioate substrates reveal the absolute stereochemistry of this interaction and indicate that catalysis by Mg2+ involves inner-sphere coordination with the nonbridging phosphate oxygen in the pro-SP position, while thiophilic cadmium ions interact with sulfur in the same position, as in one of the two phosphorothioate substrates. These results collectively suggest that during nonenzymatic RNA primer extension with a 5'-5'-imidazolium-bridged dinucleotide substrate the interaction of the catalytic Mg2+ ion with the pro-SP oxygen of the reactive phosphate plays a crucial role in the metal-catalyzed SN2(P) reaction.


Assuntos
RNA Catalítico , RNA , RNA/química , Metais , Fosfatos de Dinucleosídeos , Fosfatos , Catálise , Oxigênio , Íons , RNA Catalítico/química
5.
Acta Biomater ; 179: 61-82, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579919

RESUMO

In the field of tissue engineering, local hypoxia in large-cell structures (larger than 1 mm3) poses a significant challenge. Oxygen-releasing biomaterials supply an innovative solution through oxygen ⁠ delivery in a sustained and controlled manner. Compared to traditional methods such as emulsion, sonication, and agitation, microfluidic technology offers distinct benefits for oxygen-releasing material production, including controllability, flexibility, and applicability. It holds enormous potential in the production of smart oxygen-releasing materials. This review comprehensively covers the fabrication and application of microfluidic-enabled oxygen-releasing biomaterials. To begin with, the physical mechanism of various microfluidic technologies and their differences in oxygen carrier preparation are explained. Then, the distinctions among diverse oxygen-releasing components in regards for oxygen-releasing mechanism, oxygen-carrying capacity, and duration of oxygen release are presented. Finally, the present obstacles and anticipated development trends are examined together with the application outcomes of oxygen-releasing biomaterials based on microfluidic technology in the biomedical area. STATEMENT OF SIGNIFICANCE: Oxygen is essential for sustaining life, and hypoxia (a condition of low oxygen) is a significant challenge in various diseases. Microfluidic-based oxygen-releasing biomaterials offer precise control and outstanding performance, providing unique advantages over traditional approaches for tissue engineering. However, comprehensive reviews on this topic are currently lacking. In this review, we provide a comprehensive analysis of various microfluidic technologies and their applications for developing oxygen-releasing biomaterials. We compare the characteristics of organic and inorganic oxygen-releasing biomaterials and highlight the latest advancements in microfluidic-enabled oxygen-releasing biomaterials for tissue engineering, wound healing, and drug delivery. This review may hold the potential to make a significant contribution to the field, with a profound impact on the scientific community.


Assuntos
Materiais Biocompatíveis , Oxigênio , Engenharia Tecidual , Oxigênio/química , Humanos , Materiais Biocompatíveis/química , Engenharia Tecidual/métodos , Animais , Microfluídica/métodos
6.
ACS Sens ; 9(4): 2183-2193, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38588327

RESUMO

Sensitive and selective acetone detection is of great significance in the fields of environmental protection, industrial production, and individual health monitoring from exhaled breath. To achieve this goal, bimetallic Au@Pt core-shell nanospheres (BNSs) functionalized-electrospun ZnFe2O4 nanofibers (ZFO NFs) are prepared in this work. Compared to pure NFs-650 analogue, the ZFO NFs/BNSs-2 sensor exhibits a stronger mean response (3.32 vs 1.84), quicker response/recovery speeds (33 s/28 s vs 54 s/42 s), and lower operating temperature (188 vs 273 °C) toward 0.5 ppm acetone. Note that an experimental detection limit of 30 ppb is achieved, which ranks among the best cases reported thus far. Besides the demonstrated excellent repeatability, humidity-enhanced response, and long-term stability, the selectivity toward acetone is remarkably improved after BNSs functionalization. Through material characterizations and DFT calculations, all these improvements could be attributed to the boosted oxygen vacancies and abundant Schottky junctions between ZFO NFs and BNSs, and the synergistic catalytic effect of BNSs. This work offers an alternative strategy to realize selective subppm acetone under high-humidity conditions catering for the future requirements of noninvasive breath diabetes diagnosis in the field of individual healthcare.


Assuntos
Acetona , Testes Respiratórios , Ouro , Nanofibras , Nanosferas , Platina , Acetona/análise , Acetona/química , Nanofibras/química , Ouro/química , Testes Respiratórios/métodos , Nanosferas/química , Platina/química , Humanos , Limite de Detecção , Oxigênio/química , Técnicas Eletroquímicas/métodos
7.
ACS Sens ; 9(4): 1938-1944, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38591496

RESUMO

The adsorption of oxygen and its reaction with target gases are the basis of the gas detection mechanism by using metal oxides. Here, we present a theoretical analysis of the sensor response, within the ionosorption model, for an n-type polycrystalline semiconductor. Our goal of our work is to reveal the mechanisms of gas sensing from a fundamental point of view. We revisit the existing models in which the sensor response presents a power-law behavior with a reducing gas partial pressure. Then, we show, based on the Wolkenstein theory of chemisorption, that the sensor response depends not only on the reducing gas partial pressure but also on the oxygen partial pressure. We also find that the obtained sensor response does not explicitly depend on the grain size, and if it does, it is exclusively through the rate constants related to the involved reactions.


Assuntos
Gases , Óxidos , Oxigênio , Oxigênio/química , Óxidos/química , Gases/química , Semicondutores , Pressão , Metais/química , Adsorção , Oxirredução
8.
Cochrane Database Syst Rev ; 4: CD003214, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591664

RESUMO

BACKGROUND: Chronic lung disease (CLD) occurs frequently in preterm infants and is associated with respiratory morbidity. Bronchodilators have the potential effect of dilating small airways with muscle hypertrophy. Increased compliance and tidal volume, and decreased airway resistance, have been documented with the use of bronchodilators in infants with CLD. Therefore, bronchodilators are widely considered to have a role in the prevention and treatment of CLD, but there remains uncertainty as to whether they improve clinical outcomes. This is an update of the 2016 Cochrane review. OBJECTIVES: To determine the effect of inhaled bronchodilators given as prophylaxis or as treatment for chronic lung disease (CLD) on mortality and other complications of preterm birth in infants at risk for or identified as having CLD. SEARCH METHODS: An Information Specialist searched CENTRAL, MEDLINE, Embase, CINAHL and three trials registers from 2016 to May 2023. In addition, the review authors undertook reference checking, citation searching and contact with trial authors to identify additional studies. SELECTION CRITERIA: We included randomised and quasi-randomised controlled trials involving preterm infants less than 32 weeks old that compared bronchodilators to no intervention or placebo. CLD was defined as oxygen dependency at 28 days of life or at 36 weeks' postmenstrual age. Initiation of bronchodilator therapy for the prevention of CLD had to occur within two weeks of birth. Treatment of infants with CLD had to be initiated before discharge from the neonatal unit. The intervention had to include administration of a bronchodilator by nebulisation or metered dose inhaler. The comparator was no intervention or placebo. DATA COLLECTION AND ANALYSIS: We used the standard methodological procedures expected by Cochrane. Critical outcomes included: mortality within the trial period; CLD (defined as oxygen dependency at 28 days of life or at 36 weeks' postmenstrual age); adverse effects of bronchodilators, including hypokalaemia (low potassium levels in the blood), tachycardia, cardiac arrhythmia, tremor, hypertension and hyperglycaemia (high blood sugar); and pneumothorax. We used the GRADE approach to assess the certainty of the evidence for each outcome. MAIN RESULTS: We included two randomised controlled trials in this review update. Only one trial provided useable outcome data. This trial was conducted in six neonatal intensive care units in France and Portugal, and involved 173 participants with a gestational age of less than 31 weeks. The infants in the intervention group received salbutamol for the prevention of CLD. The evidence suggests that salbutamol may result in little to no difference in mortality (risk ratio (RR) 1.08, 95% confidence interval (CI) 0.50 to 2.31; risk difference (RD) 0.01, 95% CI -0.09 to 0.11; low-certainty evidence) or CLD at 28 days (RR 1.03, 95% CI 0.78 to 1.37; RD 0.02, 95% CI -0.13 to 0.17; low-certainty evidence), when compared to placebo. The evidence is very uncertain about the effect of salbutamol on pneumothorax. The one trial with usable data reported that there were no relevant differences between groups, without providing the number of events (very low-certainty evidence). Investigators in this study did not report if side effects occurred. We found no eligible trials that evaluated the use of bronchodilator therapy for the treatment of infants with CLD. We identified no ongoing studies. AUTHORS' CONCLUSIONS: Low-certainty evidence from one trial showed that inhaled bronchodilator prophylaxis may result in little or no difference in the incidence of mortality or CLD in preterm infants, when compared to placebo. The evidence is very uncertain about the effect of salbutamol on pneumothorax, and neither included study reported on the incidence of serious adverse effects. We identified no trials that studied the use of bronchodilator therapy for the treatment of CLD. Additional clinical trials are necessary to assess the role of bronchodilator agents in the prophylaxis or treatment of CLD. Researchers studying the effects of inhaled bronchodilators in preterm infants should include relevant clinical outcomes in addition to pulmonary mechanical outcomes.


Assuntos
Doenças do Prematuro , Pneumopatias , Pneumotórax , Nascimento Prematuro , Lactente , Feminino , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Broncodilatadores/uso terapêutico , Doença Crônica , Doenças do Prematuro/tratamento farmacológico , Doenças do Prematuro/prevenção & controle , Albuterol/uso terapêutico , Pneumopatias/tratamento farmacológico , Pneumopatias/prevenção & controle , Oxigênio
9.
ACS Sens ; 9(4): 1763-1774, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607997

RESUMO

Chemical dynamics in biological samples are seldom stand-alone processes but represent the outcome of complicated cascades of interlinked reaction chains. In order to understand these processes and how they correlate, it is important to monitor several parameters simultaneously at high spatial and temporal resolution. Hyperspectral imaging is a promising tool for this, as it provides broad-range spectral information in each pixel, enabling the use of multiple luminescent indicator dyes, while simultaneously providing information on sample structures and optical properties. In this study, we first characterized pH- and O2-sensitive indicator dyes incorporated in different polymer matrices as optical sensor nanoparticles to provide a library for (hyperspectral) chemical imaging. We then demonstrate the successful combination of a pH-sensitive indicator dye (HPTS(DHA)3), an O2-sensitive indicator dye (PtTPTBPF), and two reference dyes (perylene and TFPP), incorporated in polymer nanoparticles for multiparameter chemical imaging of complex natural samples such as green algal biofilms (Chlorella sorokiniana) and seagrass leaves (Zostera marina) with high background fluorescence. We discuss the system-specific challenges and limitations of our approach and further optimization possibilities. Our study illustrates how multiparameter chemical imaging with hyperspectral read-out can now be applied on natural samples, enabling the alignment of several chemical parameters to sample structures.


Assuntos
Nanopartículas , Oxigênio , Oxigênio/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Corantes Fluorescentes/química , Imageamento Hiperespectral/métodos , Biofilmes , Folhas de Planta/química
10.
Am J Case Rep ; 25: e942966, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635487

RESUMO

BACKGROUND Several factors have been reported as possible predictors of intestinal necrosis in patients with portal venous gas (PVG). We describe potential indicators of intestinal necrosis in PVG identified by contrasting 3 episodes of PVG in a patient on hemodialysis against previously verified factors. CASE REPORT An 82-year-old woman undergoing hemodialysis was admitted to our hospital thrice for acute abdominal pain. On first admission, she was alert, with a body temperature of 36.3°C, blood pressure (BP) of 125/53 mmHg, pulse rate of 60/min, respiratory rate of 18/min, and 100% oxygen saturation on room air. Computed tomography (CT) revealed PVG, intestinal distension, poor bowel wall enhancement, bubble-like pneumatosis in the intestinal wall, and minimal ascites. PVG caused by intestinal ischemia was diagnosed, and she recovered after bowel rest and hydration. Three months later, she had a second episode of abdominal pain. BP was 115/56 mmHg. CT revealed PVG and a slight accumulation of ascites, without pneumatosis in the intestinal wall. She again recovered after conservative measures. Ten months later, the patient experienced a third episode of abdominal pain, with BP of 107/52 mmHg. CT imaging indicated PVG, considerable ascites, and linear pneumatosis of the intestinal walls. Despite receiving conservative treatment, the patient died. CONCLUSIONS A large accumulation of ascites and linear pneumatosis in the intestinal walls could be potential indicators of intestinal necrosis in patients with PVG caused by intestinal ischemia. As previously reported, hypotension was further confirmed to be a reliable predictor of intestinal necrosis.


Assuntos
Enteropatias , Isquemia Mesentérica , Pneumatose Cistoide Intestinal , Lesões do Sistema Vascular , Feminino , Humanos , Idoso de 80 Anos ou mais , Ascite/complicações , Veia Porta , Pneumatose Cistoide Intestinal/diagnóstico por imagem , Pneumatose Cistoide Intestinal/terapia , Dor Abdominal/etiologia , Oxigênio , Lesões do Sistema Vascular/complicações , Diálise Renal/efeitos adversos , Isquemia/complicações , Necrose
11.
Sci Rep ; 14(1): 8946, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637621

RESUMO

Oxygen deficiency is a major problem in the Baltic Sea. To study the impact of hypoxia on the functional diversity of benthic fauna and the possibility of macrozoobenthos recovery, data were analyzed in a gradient of oxygen conditions in the Gdansk Basin. The research conducted on the basis of biological traits analysis enabled us to analyze the number, type and spatial distribution of biological traits-a proxy for functions performed by macrozoobenthos. A significant depletion of macrofauna was already observed under conditions of reduced oxygen above the bottom, both in terms of functional diversity and biomass. Although taxa observed in hypoxia (DO < 2 mL L-1) perform a number of functions, the remaining species do not form complex structures in the sediments or cause deep bioturbation and bioirrigation. Moreover, their extremely low biomass plays an irrelevant role in benthic-pelagic coupling. Thus, benthic fauna under hypoxia is not an element that ensures the functioning of the ecosystem. We assess that traits important for species dispersal and the presence of taxa resistant to short-term hypoxia in the oxic zone above the halocline provide a "backup" for ecosystem functioning under altered diverse oxygen conditions below the halocline after cessation of hypoxia in the southern Baltic Sea.


Assuntos
Ecossistema , Oxigênio , Humanos , Oxigênio/análise , Biomassa , Países Bálticos , Hipóxia , Sedimentos Geológicos/química
12.
Nature ; 628(8009): 776-781, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658683

RESUMO

Dissolved organic matter (DOM) is one of the most complex, dynamic and abundant sources of organic carbon, but its chemical reactivity remains uncertain1-3. Greater insights into DOM structural features could facilitate understanding its synthesis, turnover and processing in the global carbon cycle4,5. Here we use complementary multiplicity-edited 13C nuclear magnetic resonance (NMR) spectra to quantify key substructures assembling the carbon skeletons of DOM from four main Amazon rivers and two mid-size Swedish boreal lakes. We find that one type of reaction mechanism, oxidative dearomatization (ODA), widely used in organic synthetic chemistry to create natural product scaffolds6-10, is probably a key driver for generating structural diversity during processing of DOM that are rich in suitable polyphenolic precursor molecules. Our data suggest a high abundance of tetrahedral quaternary carbons bound to one oxygen and three carbon atoms (OCqC3 units). These units are rare in common biomolecules but could be readily produced by ODA of lignin-derived and tannin-derived polyphenols. Tautomerization of (poly)phenols by ODA creates non-planar cyclohexadienones, which are subject to immediate and parallel cycloadditions. This combination leads to a proliferation of structural diversity of DOM compounds from early stages of DOM processing, with an increase in oxygenated aliphatic structures. Overall, we propose that ODA is a key reaction mechanism for complexity acceleration in the processing of DOM molecules, creation of new oxygenated aliphatic molecules and that it could be prevalent in nature.


Assuntos
Água Doce , Oxirredução , Água Doce/química , Polifenóis/química , Carbono/química , Rios/química , Lagos/química , Lignina/química , Taninos/química , Suécia , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Oxigênio/química
13.
Ther Adv Respir Dis ; 18: 17534666241246637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659187

RESUMO

BACKGROUND: Although high-flow nasal cannula (HFNC) oxygenation is currently recommended to prevent desaturation during sedation for bronchoscopy, there is no consensus on an optimal flow rate. OBJECTIVE: To determine the optimal oxygen flow rate for HFNC to effectively prevent desaturation during sedation for bronchoscopy. DESIGN: Prospective, randomized, and controlled study. METHODS: Patients (n = 240) scheduled for bronchoscopy were randomized to receive HFNC with propofol sedation (fraction of inspired oxygen, 100%) at one of six flow rates of 10, 20, 30, 40, 50, and 60 L/min, designated as groups 1-6, respectively. RESULTS: The incidence of desaturation significantly decreased by increasing the oxygen flow rate (42.5%, 17.5%, 15%, 10%, 2.5%, and 0% for groups 1-6, respectively, p < 0.0001). The optimal oxygen flow rate for HFNC determined by probit regression to effectively prevent desaturation in 95% of patients was 43.20 (95% confidence interval, 36.43-55.96) L/min. The requirement for airway intervention was significantly decreased by increasing the oxygen flow rate. CONCLUSION: An HFNC flow rate of 50-60 L/min is recommended to prevent desaturation during sedation for bronchoscopy. REGISTRATION: NCT05298319 at ClinicalTrials.gov.


High-flow nasal cannula oxygenation during bronchoscopyMany patients undergo a special test to check their airways for problems. Sometimes, doctors need to take out a small part of the area that's causing trouble to find out what's wrong. But during this test, some patients can struggle to get enough oxygen, which can even be life-threatening. To help with this, there's a device called a high-flow nasal cannula (HFNC). It gives patients adjustable amounts of oxygen, like a gentle breeze into their nose. But doctors weren't sure how much oxygen was best during this test. So, we studied 240 patients using HFNC at different oxygen levels­like slow, medium, and fast flows. We found that the higher the oxygen flow, the less likely patients were to have oxygen problems. For example, at the lowest flow (10 liters per minute), about 42.5% of patients had oxygen trouble, but at the highest flow (60 liters per minute), none did. And we figured out that a flow rate around 43.2 liters per minute would prevent 95% patients from having oxygen problems. So, we recommend using a flow rate between 50 and 60 liters per minute during this test to keep patients safe from oxygen issues.


Assuntos
Broncoscopia , Cânula , Oxigenoterapia , Propofol , Humanos , Broncoscopia/efeitos adversos , Masculino , Estudos Prospectivos , Feminino , Pessoa de Meia-Idade , Oxigenoterapia/métodos , Idoso , Propofol/administração & dosagem , Propofol/efeitos adversos , Oxigênio/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Sedação Consciente , Resultado do Tratamento , Adulto
14.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667159

RESUMO

The screen-printed carbon electrode (SPCE) is a useful technology that has been widely used in the practical application of biosensors oriented to point-of-care testing (POCT) due to its characteristics of cost-effectiveness, disposability, miniaturization, wide potential window, and simple electrode design. Compared with gold or platinum electrodes, surface modification is difficult because the carbon surface is chemically or physically stable. Oxygen plasma (O2) can easily produce carboxyl groups on the carbon surface, which act as scaffolds for covalent bonds. However, the effect of O2-plasma treatment on electrode performance remains to be investigated from an electrochemical perspective, and sensor performance can be improved by clarifying the surface conditions of plasma-treated biosensors. In this research, we compared antibody modification by plasma treatment and physical adsorption, using our novel immunosensor based on gold nanoparticles (AuNPs). Consequently, the O2-plasma treatment produced carboxyl groups on the electrode surface that changed the electrochemical properties owing to electrostatic interactions. In this study, we compared the following four cases of SPCE modification: O2-plasma-treated electrode/covalent-bonded antibody (a); O2-plasma-treated electrode/physical adsorbed antibody (b); bare electrode/covalent-bonded antibody (c); and bare electrode/physical absorbed antibody (d). The limits of detection (LOD) were 0.50 ng/mL (a), 9.7 ng/mL (b), 0.54 ng/mL (c), and 1.2 ng/mL (d). The slopes of the linear response range were 0.039, 0.029, 0.014, and 0.022. The LOD of (a) was 2.4 times higher than the conventional condition (d), The slope of (a) showed higher sensitivity than other cases (b~d). This is because the plasma treatment generated many carboxyl groups and increased the number of antibody adsorption sites. In summary, the O2-plasma treatment was found to modify the electrode surface conditions and improve the amount of antibody modifications. In the future, O2-plasma treatment could be used as a simple method for modifying various molecular recognition elements on printed carbon electrodes.


Assuntos
Técnicas Biossensoriais , Carbono , Eletrodos , Ouro , Oxigênio , Carbono/química , Ouro/química , Nanopartículas Metálicas/química , Propriedades de Superfície , Limite de Detecção , Técnicas Eletroquímicas , Adsorção
15.
Mar Drugs ; 22(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38667759

RESUMO

The enormous potential attributed to prodigiosin regarding its applicability as a natural pigment and pharmaceutical agent justifies the development of sound bioprocesses for its production. Using a Serratia rubidaea strain isolated from a shallow-water hydrothermal vent, optimization of the growth medium composition was carried out. After medium development, the bacterium temperature, light and oxygen needs were studied, as was growth inhibition by product concentration. The implemented changes led to a 13-fold increase in prodigiosin production in a shake flask, reaching 19.7 mg/L. The conditions allowing the highest bacterial cell growth and prodigiosin production were also tested with another marine strain: S. marcescens isolated from a tide rock pool was able to produce 15.8 mg/L of prodigiosin. The bioprocess with S. rubidaea was scaled up from 0.1 L shake flasks to 2 L bioreactors using the maintenance of the oxygen mass transfer coefficient (kLa) as the scale-up criterion. The implemented parameters in the bioreactor led to an 8-fold increase in product per biomass yield and to a final concentration of 293.1 mg/L of prodigiosin in 24 h.


Assuntos
Reatores Biológicos , Meios de Cultura , Prodigiosina , Serratia , Prodigiosina/biossíntese , Serratia/metabolismo , Meios de Cultura/química , Biomassa , Oxigênio/metabolismo , Temperatura , Organismos Aquáticos/metabolismo
16.
Physiol Meas ; 45(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38569522

RESUMO

Objective. The continuous delivery of oxygen is critical to sustain brain function, and therefore, measuring brain oxygen consumption can provide vital physiological insight. In this work, we examine the impact of calibration and cerebral blood flow (CBF) measurements on the computation of the relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2) from hemoglobin-sensitive intrinsic optical imaging data. Using these data, we calculate rCMRO2, and calibrate the model using an isometabolic stimulus.Approach. We used awake head-fixed rodents to obtain hemoglobin-sensitive optical imaging data to test different calibrated and uncalibrated rCMRO2models. Hypercapnia was used for calibration and whisker stimulation was used to test the impact of calibration.Main results. We found that typical uncalibrated models can provide reasonable estimates of rCMRO2with differences as small as 7%-9% compared to their calibrated models. However, calibrated models showed lower variability and less dependence on baseline hemoglobin concentrations. Lastly, we found that supplying the model with measurements of CBF significantly reduced error and variability in rCMRO2change calculations.Significance. The effect of calibration on rCMRO2calculations remains understudied, and we systematically evaluated different rCMRO2calculation scenarios that consider including different measurement combinations. This study provides a quantitative comparison of these scenarios to evaluate trade-offs that can be vital to the design of blood oxygenation sensitive imaging experiments for rCMRO2calculation.


Assuntos
Encéfalo , Imagem Óptica , Consumo de Oxigênio , Oxigênio , Vigília , Animais , Calibragem , Camundongos , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Oxigênio/metabolismo , Vigília/fisiologia , Consumo de Oxigênio/fisiologia , Circulação Cerebrovascular/fisiologia , Hemoglobinas/metabolismo , Hemoglobinas/análise , Masculino , Camundongos Endogâmicos C57BL , Hipercapnia/metabolismo , Hipercapnia/diagnóstico por imagem
17.
ACS Sens ; 9(4): 2101-2109, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38574240

RESUMO

Single-atom catalysts (SACs) hold great promise in highly sensitive and selective gas sensors due to their ultrahigh atomic efficiency and excellent catalytic activity. However, due to the extremely high surface energy of SACs, it is still a huge challenge to synthesize a stable single-atom metal on sensitive materials. Here, we report an atomic layer deposition (ALD) strategy for the elaborate synthesis of single-atom Pt on oxygen vacancy-rich Fe2O3 nanosheets (Pt-Fe2O3-Vo), which displayed ultrafast and sensitive detection to H2, achieving the stability of Pt single atoms. Gas-sensing investigation showed that the Pt-Fe2O3-Vo materials enabled a significantly enhanced response of 26.5-50 ppm of H2, which was 17-fold higher than that of pure Fe2O3, as well as ultrafast response time (2 s), extremely low detection limit (86 ppb), and improved stability. The experimental and density functional theory (DFT) studies revealed that the abundant oxygen vacancy sites of Fe2O3 contributed to stabilizing the Pt atoms via electron transfer. In addition, the stabilized Pt atoms also greatly promote the electron transfer of H2 molecules to Fe2O3, thereby achieving an excellent H2 sensing performance. This work provides a potential strategy for the development of highly selective and stable chemical sensors.


Assuntos
Compostos Férricos , Hidrogênio , Nanoestruturas , Oxigênio , Platina , Platina/química , Oxigênio/química , Hidrogênio/química , Compostos Férricos/química , Nanoestruturas/química , Teoria da Densidade Funcional , Catálise , Limite de Detecção
18.
Neurotox Res ; 42(2): 25, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619632

RESUMO

Oxygen (O2) supplementation is commonly used to treat hypoxia in patients with respiratory failure. However, indiscriminate use can lead to hyperoxia, a condition detrimental to living tissues, particularly the brain. The brain is sensitive to reactive oxygen species (ROS) and inflammation caused by high concentrations of O2, which can result in brain damage and mitochondrial dysfunction, common features of neurodegenerative disorders. Hyperoxia leads to increased production of ROS, causing oxidative stress, an imbalance between oxidants and antioxidants, which can damage tissues. The brain is particularly vulnerable to oxidative stress due to its lipid composition, high O2 consumption rate, and low levels of antioxidant enzymes. Moreover, hyperoxia can cause vasoconstriction and decreased O2 supply to the brain, posing a challenge to redox balance and neurodegenerative processes. Studies have shown that the severity of hyperoxia-induced brain damage varies with inspired O2 concentration and duration of exposure. Therefore, careful evaluation of the balance between benefits and risks of O2 supplementation, especially in clinical settings, is crucial.


Assuntos
Lesões Encefálicas , Hiperóxia , Humanos , Espécies Reativas de Oxigênio , Encéfalo , Oxigênio , Antioxidantes
20.
Mol Biol Rep ; 51(1): 558, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643323

RESUMO

BACKGROUND: Our previous research shows that Curcumin (CUR) attenuates myocardial ischemia-reperfusion injury (MIRI) by reducing intracellular total RNA m6A levels. However, the mechanism remains unknown. METHODS: For ischemia-reperfusion (IR), H9c2 cells were cultured for 6 h in serum-free low-glycemic (1 g/L) medium and a gas environment without oxygen, and then cultured for 6 h in high-glycemic (4.5 g/L) medium supplemented with 10% FBS and a 21% oxygen environment. The effects of different concentrations of CUR (5, 10, and 20 µM) treatments on signaling molecules in conventionally cultured and IR-treated H9c2 cells were examined. RESULTS: CUR treatment significantly up-regulated the H2S levels, and the mRNA and protein expression of cystathionine γ-lyase (CSE), and down-regulated the mRNAs and proteins levels of thiosulfate sulfurtransferase (TST) and ethylmalonic encephalopathy 1 (ETHE1) in H9c2 cells conventionally cultured and subjected to IR. Exogenous H2S supply (NaHS and GYY4137) significantly reduced intracellular total RNA m6A levels, and the expression of RNA m6A "writers" METTL3 and METTL14, and increased the expression of RNA m6A "eraser" FTO in H9c2 cells conventionally cultured and subjected to IR. CSE knockdown counteracted the inhibitory effect of CUR treatment on ROS production, promotion on cell viability, and inhibition on apoptosis of H9c2 cells subjected to IR. CONCLUSION: CUR attenuates MIRI by regulating the expression of H2S level-regulating enzymes and increasing the endogenous H2S levels. Increased H2S levels could regulate the m6A-related proteins expression and intracellular total RNA m6A levels.


Assuntos
Curcumina , Sulfeto de Hidrogênio , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Curcumina/farmacologia , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , RNA , Oxigênio/metabolismo , Metiltransferases/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Dioxigenase FTO Dependente de alfa-Cetoglutarato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...